ROUND I: Similarity and Pythagorean theorem

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM OR AS DIRECTED IN THE PROBLEM

1. If five foot- one inch tall Elaine casts an 84 inch shadow, then how tall is her friend Jerry if he has a shadow at the same time which is one foot shorter than hers? Give your answer in feet and nearest inch.
2. The altitude to the hypotenuse of a right triangle has length 10 and divides the hypotenuse into two pieces, one 21 units longer than the other. Find the length of the shorter of these two pieces.
3. Let $\overline{C B}$ be a leg of the right triangle of least perimeter whose sides have integral lengths, whose hypotenuse is one unit longer than $C B$, and in which $C B \geq 100$. Find $C B$.

ANSWERS
(1 pt) 1. \qquad
(2 pts) 2. \qquad
(3 pts) 3. \qquad
Mass. Academy, Tahanto, Westborough

ROUND II: Algebra 1 - open
ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM OR AS DIRECTED IN THE PROBLEM

1. Solve: $12\left(\frac{1}{x-2}\right)=32\left(\frac{1}{x+8}\right)$
2. A person born in the year $x^{2}+73$ celebrated her 14 th birthday in the year $(x+1)^{2}$. In what year was she born?
3. Ann is twice as old as Judy was when Ann was as old as Judy is now. If the sum of their present ages is 56 , how old is each now?

ANSWERS
$(1 \mathrm{pt}) 1$.
$x=$
$2 \mathrm{pts}) 2$. \qquad
(3 pts) 3. ANN \qquad JUDY \qquad
Quaboag, South, Tantasqua

ROUND III: Functions

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM OR AS DIRECTED IN THE PROBLEM

1. For $y=\frac{5 x-3}{4}$, find the formula for the inverse function in the form $y=$ an expression involving x.
2. If $f(4 x+3)=2 x+1$, find $f(-9)$.
3. Find all values of x for which $\mathrm{f}(\mathrm{f}(\mathrm{x}))=11 \mathrm{f}(\mathrm{x})$, given that $\mathrm{f}(\mathrm{x})=x^{2}-x$.

ANSWERS
(1 pt) 1. $\quad y=$
(2 pts) 2.
(3 pts) 3.
Doherty, Hudson, Shrewsbury

ROUND IV: Combinatorics

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM OR AS DIRECTED IN THE PROBLEM

1. There are 10 points in a plane, no three of which are collinear. How many triangles can be formed having the given points as vertices?
2. How many odd integers between 1000 and 10,000 are written without the digit 6 ?
3. George set type by hand for a book of poems which he wrote. After setting the type for the poems, one poem to a page, he realized that the pages should be numbered starting with 1. Starting at midnight, he set all the page numbers in their proper places. When he finally finished the job, it was 1:45 am . If it took him $\frac{1}{2}$ minute to set a single digit properly on a page, how many poems are in the book?

ANSWERS
(1 pt) 1.
(2 pts) 2. \qquad
(3 pts) 3.
Bancroft, Shrewsbury, Tahanto

ROUND V: Analytic geometry of straight lines and conic sections

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM OR AS DIRECTED IN THE PROBLEM

1. What equality will make the lines with these equations parallel?

$$
a x+b y=c \quad \text { and } \quad x-d=e(y-f)
$$

2. The area of an ellipse is given by the expression $\pi a b$ where a and b are half the lengths of the major and minor axes. Fine the area of the ellipse with equation

$$
4 x^{2}+9 y^{2}-54 y+45=0
$$

3. Find the coordinates of the focal point of the parabola with equation $16 y=x^{2}-4 x+52$.

ANSWERS

$(1 \mathrm{pt}) 1$. \qquad
(2 pts) 2. \qquad
(3 pts) 3. $\quad(\quad, \quad)$
Auburn, Bancroft, QSC

TEAM ROUND: Topics of previous rounds and open

ALL ANSWERS MUST BE IN SIMPLEST EXACT FORM OR AS DIRECTED IN THE PROBLEM and ON THE SEPARATE TEAM ROUND ANSWER SHEET

1. Write a condition in terms of side length p so that $\triangle P Q R$ is acute.

2. Mr. T's December salary was \$D. He got a 10% raise for the month of January, but he received 10% less in February than in January. In terms of D, what was Mr.T's average salary for the 3 months?
3. Evaluate $f(10,6)$ given:

$$
f(x, y)=\left\{\begin{array}{l}
f(x-y, y-1)+2 \text { when } x>y>0 \\
f(y-x, x-1)+1 \text { when } y>x>0 \\
10 \text { otherwise }
\end{array}\right.
$$

4. How many diferent ways can tiles A, B, and C be placed in the open squares such that bordering numbers are equal? All three tiles must be used for each solution. Tiles may be rotated but not flipped over.

5. The circle with equation $(x-4)^{2}+(y-2)^{2}=52$ passes through $\mathrm{A}(0,8)$. How many distinct chords of the circle have, integer lengths?
endpoint A and
6. Solve for $\mathrm{x}: ~|x-2|^{2}+3|x-2|=4$
7. A side of the large square is equal to the square of a side of each small square. The area of the shaded region is 60 . Find the side of the large square.
8. For n a positive integer, let $f(n)=\mathrm{n}(\mathrm{n}+1)(\mathrm{n}+2)$.

Find n if $\frac{f(8)}{f(n)}=f(4)$.

9. Of 60 people in a room, $\frac{2}{3}$ are women and $\frac{2}{5}$ of the people have blonde hair. What are the maximum and minimum numbers of women in the room whose hair is not blonde?

Auburn, Clinton, Hudson, Leicester, Lincoln-Sudbury, Mass. Academy, Worcester Academy

| ROUND I | 1. 1 pt | 4 ft 4 in | $4^{\prime} 4^{\prime \prime}$ |
| :--- | :--- | :--- | :--- | :--- |
| sim
 Myth | 2. 2 pts | 4 | |
| | 3.3 pts | $1 / 2$ | |

ROUND II 1. 1 pt
alg 1
2. 2 pts 1922
3. 3 dots ann 32 judy 24

ROUND III 1. 1 pt $y=\frac{4 x+3}{5} \quad \frac{4}{5} x+\frac{3}{5}$
funct
2. 2 nos -5
3. 3 nets $-3,0,1,4$ any order

ROUND IV 1. $1 \mathrm{pt} / 20$
comb
2. 2 nets 3240
3. 3 nets 106

ROUND V 1. 1 pt $\frac{-a}{b}=\frac{1}{e}$ or equivalent analyt
2. 2 pts 6π
3. $2 \operatorname{ots}(2,7)$

TEAM ROUND 2 pts each

$$
\sqrt{11}<\rho<\sqrt{61}
$$

1. OR $\|<p^{2}<61$
1.03 D or $\frac{103 \mathrm{D}}{100}$
2. OR 103% of D
3. 14
4. O or none
5. 28
6. $\operatorname{lan} 3 \begin{aligned} & \text { need } \\ & \text { both }\end{aligned}$
7. 10
8.
9. $\max 36 \operatorname{mIN} 16$

January
IND I
Round I

1. $\quad \begin{array}{ll}84 & \frac{x}{61}=\frac{72}{84} \\ x=52.2857 \mathrm{in}\end{array}$
$\therefore 4 \mathrm{ft} 4 \mathrm{in}$
2.
3. From ~ \sim s: theorem
$x^{2}+21 x-100=(x+25)(x-4)=0, x=4$
4.

$$
y^{2}=2 x+1 \quad \text { with } x \geq 100
$$

$$
\text { and } 2 x+1 \text { a perfect square }
$$

$$
\therefore 2 x+1=225 \text { and } x=112
$$

Roving II

1. $12(x+8)=32(x-2) . \quad$ May $\div 4$

$$
\begin{aligned}
3 x+24 & =8 x-16 \\
40 & =5 x \text { and } x=8
\end{aligned}
$$

2. $x^{2}+73+14=(x+1)^{2}$

$$
87=2 x+1
$$

$$
43=x
$$

Then $43^{2}+73=1922$
3.

	now	then		
Ann	a	j		
Judy	j	$j-(a-j)$		sane difference
:---				
,				
between ages				
now and then				

$$
\begin{aligned}
& a+j=56 \text { and } a=2(2 j-a) \\
& a+\frac{3}{4} a=5 c \longleftarrow 3 a=4 j
\end{aligned}
$$

$$
a=32 \text { and } j=24
$$

ROUND III
1 Linear si switch x ansi y and solve for y $x=\frac{5 y-3}{4}$
$4 x=5 y-3$
$4 x+3=5 y$ and $y=\frac{4 x+3}{5}, ~$

Round III cont.
2. Set $4 x+3=-9$ and get $x=-3$.

$$
\text { Then } f(-9)=2(-3)+1=-5
$$

3. $\left(x^{2}-x\right)^{2}-\left(x^{2}-x\right)=11\left(x^{2}-x\right)$

$$
\begin{aligned}
& \left(x^{2}-x\right)\left[x^{2}-x-1-11\right]=0 \\
& x(x-1)\left(x^{2}-x-12\right)=0 \\
& x(x-1)(x-4)(x+3)=0 \\
& x=0,1,4,-3
\end{aligned}
$$

ROUND IV

$$
1 \quad 10 C_{3}=\frac{10!}{3!7!}=120
$$

2. 4 digits, first not 0 , name is 6 , $4^{\text {th }}$ is odd

$$
8 \cdot 9 \cdot 9 \cdot 5=3240
$$

3 inidnight to 1.45 am is 105 minutes or 210 half ininutes
The first 9 gem take 4 half min The next 902 digits, take 180 half mn. $210-189=21$ half min remain for 3 - digit nuinbers and $21 \div 3=7$.
$4+90+7=106$ poems
Round V
1 Make slopes $=$ Use $y=m x+b$ form $a x+b y=c \Rightarrow y=-\frac{a}{b} x+\frac{c}{b}$ $x-d=e(y-f) \Rightarrow y=\frac{1}{\epsilon} x+$ other terms

$$
\therefore-\frac{a}{b}=\frac{1}{e}
$$

2. $4 x^{2}+4 y^{2}-54 y=-45$

$$
4 x^{2}+9\left(y^{2}-6 y+9\right)=-45+81
$$

$$
4 x^{2}+9(y-3)^{2}=36
$$

$$
\frac{x^{2}}{9}+\frac{(y-3)^{2}}{4}=1 \Rightarrow a=3, b=2
$$

$$
\text { Area }=\pi a b=6 \pi
$$

ROUND I cont

3. $\quad 16 y=x^{2}-4 x+4+48$
$4 \rho y=(x-2)^{2}+48$ and $p=4$
$x=2$ makes $16 y=48$ and $y=3$
Vertex $(2,3)$ and opens upward

Focal pt $(2,7)$
p above the vertex

TEAM ROUND

1. For acute $\mathrm{Z} P$ need $p^{2}<5^{2}+6^{2}$ a $p^{2}<61$

$$
4 R \quad=\quad 5^{2}<p^{2}+6^{2} a-11<p^{2}
$$

.. $\quad 4 Q$. $6^{2}<p^{2}+5^{2}$ a $11<p^{2}$
Thus $11<p^{2}<61$ or $\sqrt{11}<p<\sqrt{61}$
2. Der salary $=D$

Jan " $=1.10$

$$
\text { Feb } \quad=.9(1.10)=.99 \mathrm{D}
$$

Ave $=\frac{D+110+990}{3}=1.03 \mathrm{D}$
$3 f(10,6)=f(4,5)+2 \quad$ since $10>6>0$

$$
\begin{array}{lll}
=f(1,3)+1+2 & \text { " } & 5>4>0 \\
=f(2,0)+1+3 & \text { " } & 3>1>0 \\
=10+4 & \text { " otherwise } \\
=14 & &
\end{array}
$$

4 Trial without sulceess suggest none This ciganized search will verify that. match

5 radius $=\sqrt{52}$, diam $-2 \sqrt{52} \simeq 14.422$
Chords with end pt A can have length r $1,2,3, .14$ and there are 2 of each length Thus 28

TEAM ROUND Cont
$6 \quad|x-2|^{2}+3|x-2|-4=0$

$$
\begin{gathered}
(|x-2|+4)(|x-2|-1)=0 \\
|x-2|=-4 \text { o. }|x-2|=1 \\
\text { NO } 0 k \\
x=301
\end{gathered}
$$

7 Let $x=$ side of small square
Then $x^{2}=$." large "
Area: large sq -4 small sq $=60$

$$
x^{4}-4 x^{2}=60
$$

$$
x^{4}-4 x^{2}-60=0
$$

$$
\begin{aligned}
& \left(x^{2}-10\right)\left(x^{2}+6\right)=0 \\
& x^{2}=10, \text { ans }
\end{aligned}
$$

$$
x^{2}=10 \text {, ans }
$$

$8 \quad \frac{f(8)}{f(n)}=f(4) \Rightarrow f(n)=\frac{f(8)}{f(4)}$
which becomes

$$
\begin{aligned}
& n(n+1)(n+2)=\frac{8 \cdot 9 \cdot 10}{4 \cdot 5 \cdot 6}=6 \\
& \text { or } n(n+1)(n+2)=1 \cdot 2 \cdot 3 \text { and } n=1
\end{aligned}
$$

$9 \quad \frac{2}{3}$ of $c 0=40$ women; $\frac{2}{5}(60)=24$ blondes
MAX

MIN

